%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Gram-Schmidt
r=zeros(n-5,n-5);
q=zeros(n,n-5);
for k=1:n-5
r(k,k)=norm(K(:,k),2);
if r(k,k)==0
break
else q(:,k)=K(:,k)/r(k,k);
for j=k+1:n-5
r(k,j)=q(:,k)'*K(:,j);
K(:,j)=K(:,j)-r(k,j)*q(:,k);
end
end
end
Q=q;
R=r;
X_Gram=R\(Q'*b)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Householder QR Factorization
K=H(:,1:n-5);
v=zeros(n,n-5);
a=K;
beta=zeros(n-5,1);
for k=1:n-5
alpha=zeros(n-5,1);
alpha(k,1)=-sign(a(k,k))*sqrt(sumsqr(a(k:n,k)));
e=zeros(n,1);
e(k,1)=1;
v(:,k)=[zeros(k-1,1);a(k:n,k)]-alpha(k,1)*e;
beta=v(:,k)'*v(:,k);
if beta==0
break
end
for j=k:n-5
gama=v(:,k)'*a(:,j);
a(:,j)=a(:,j)-(2*gama/beta)*v(:,k);
end
end
bb=a/K*b;
triu(a);
x_House=triu(a)\bb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%singular value decomposition
[U,S,V]=svd(K);
X_svd=zeros(n-5,1);
for i=1:n-5
x=U(:,i)'*b*V(:,i)/S(i,i);
X_svd=X_svd+x;
end
X_svd